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Abstract 

The interpretation of image reconstructions obtained by 
ptychography in a scanning transmission electron micro- 
scope (STEM) is investigated. In this technique, a 
number of coherent electron diffraction patterns are 
obtained from adjacent points of a crystalline sample by 
scanning a focused electron beam. The phase problem is 
solved by using an interference phenomenon, thus 
obtaining a very high resolution (0.136 nm) reconstruc- 
tion of the specimen. Simulations presented here assist 
experiments described in a previous paper [Nellist & 
Rodenburg (1998). Acta Cryst. A54, 49-60]. In this 
paper, the simulation method which is best suited for the 
calculation of ptychographical reconstructions for perfect 
crystals is described. Simulation results are presented for 
the simplest case of diffraction beams with single overlap 
and it is shown that the reconstruction does not match the 
exit-surface wave function for axial plane-wave illumina- 
tion but instead resembles the image wave function with 
a fixed focus setting on the middle section of the 
specimen. A second reconstruction method is described, 
in which a greater angular diameter of the aperture is 
used and every beam is re-interfered with the central 
beam. The variation of the amplitude and phase of all 
reconstructed beams with crystal thickness is very similar 
up to a thickness of about 25 nm. It is argued that such a 
simple relationship can only be expected for projected 
structures containing identical atomic columns. 

1. Introduction 

Ptychography is a name given to a technique invented by 
Hoppe (Hoppe, 1969; Hegerl & Hoppe, 1970; Hoppe, 
1982) that aims to solve the diffraction-pattern phase 
problem by interfering adjacent Bragg reflections 
coherently and thus determining their relative phase. In 
the original formulation, Hoppe envisaged that such 
interference could be effected by placing a very narrow 
aperture in the plane of the specimen so that each 
reciprocal-lattice point would be spread out and thus 
overlap with one another. The name ptychography, from 
the Greek 7rrv~, which means fold, derives from this 
optical configuration; each reciprocal-lattice point is 
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convoluted with some function, and thus made to 
interfere with its neighbours. In fact, measuring only 
the intensities of interfering adjacent diffracted beams 
still leads to an ambiguity of two possible complex 
conjugates for each underlying complex diffraction 
amplitude and so in its original formulation ptychogra- 
phy is equivalent to the well known theorem that for a 
finite specimen (that is one delineated by a narrow 
aperture, sometimes known as a 'finite support') the one- 
dimensional phase problem is soluble to within an 
ambiguity of 2 N, where N is the number of Fourier 
components that make up the specimen (Rodenburg, 
1989). However, such ambiguities may be resolved by 
changing the phase, profile or position of the illuminating 
beam in some way (Hoppe, 1969). The fact that we must 
measure not only the intensities of the diffracted beams 
but also the intensities lying midway between the beams, 
where the convoluted Bragg beams interfere, is similarly 
an alternative statement of the Nyquist sampling theorem 
for components of diffracted intensity, which in general 
have twice the frequency (in reciprocal space) of their 
underlying complex amplitudes. 

Ptychography has one very practical experimental 
advantage: the degree of coherence required in the 
illuminating beam is rather modest; it is only necessary 
that adjacent diffracted beams can interfere with one 
another significantly. In electron reference-beam tech- 
niques, such as conventional bright-field imaging 
(Spence, 1988), holography (Lichte, 1992) and focal- 
series reconstructions (Van Dyck, Op de Beeck & Coene, 
1993) in transition electron microscopy, the most 
profound limitation to spatial resolution arises from the 
narrow width of the coherence envelope (typically 15- 
30 mrad). In the previous paper (Nellist & Rodenburg, 
1998) (paper I), we applied ptychography experimentally 
to obtain an image of a silicon crystal at several times the 
resolution determined by these conventional limits. The 
strength of the technique derives from the fact that all 
pertinent wave interferences occur in the vicinity of the 
specimen itself and not across macroscopic distances 
within a microscope or diffractometer. The method is 
much less affected by lens aberrations than conventional 
imaging methods and can be thought of as a simplifica- 
tion of a much more general imaging method that can 
cope with non-crystalline objects. Ptychography, or its 
derivatives, may therefore provide a solution to the long- 
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standing resolution problem in electron imaging (or any 
coherence-limited imaging technique). 

In this paper, we start by extending the thin-specimen 
approximation of ptychography in order to account for 
three-dimensional scattering effects in the scanning 
transmission electron microscope (STEM) mode. These 
turn out to be important; they clearly express themselves 
in the experimental data presented in the preceding paper. 
However, we will show that the reconstructed-object 
wave function (ROWF) we obtain by phasing the 
diffraction pattern while supposing it to be a two- 
dimensional grating still gives a good representation of 
the exit-surface wave function (ESWF) obtained under 
axial plane-wave illumination, albeit apart from a slight 
modification due to a free-space defocus propagation, 
provided the specimen is not too thick. In particular, the 
calculations presented here suggest that the direct 
interpretation of experimental 'super-resolution' images 
(Nellist, McCallum & Rodenburg, 1995, Nellist & 
Rodenburg, 1998) is justified. 

2. Practical optical configurations for ptychography 
The ideal ptychographical experiment would consist of 
the optical configuration shown in Fig. 1. A single plane 
wave is incident upon the specimen, which, for 
simplicity, we first assume is crystalline. In the far field, 
we have a diffraction pattern consisting of a number of 
reflections. Ignoring experimental details, let us say we 
are able to interfere each pair of adjacent reflections and 
thus measure the relative phase between each pair of 
beams. If we arbitrarily assign zero phase to the zero- 
order beam (this is of no consequence, being the absolute 
phase of the entire wavefield at a particular time), we may 
then phase any particular beam by choosing a path 
between it and the zero-order beam via a number of 
intermediate beams. The phase of the particular beam is 
then given by adding the phase differences between each 
of the intermediate pairs of beams. For a two-dimensional 
object, there may be a number of different routes to a 
particular reflection, in which case we can test the 
accuracy of our measurements by phase closure. Having 
assigned a complex amplitude (modulus and phase) to all 
the diffracted beams, we may then perform a back 
Fourier transform on the resulting function to produce the 
ROWE Assuming we can do this for every point in 
reciprocal space, the ROWF should be identical to the 
ESWE The ESWF may then be related to the atomic 
structure, say by assuming, in the case of electrons, that 
the phase of the ESWF is proportional to the projected 
atomic potential, or by more sophisticated inverse 
methods which account for propagation and inelastic 
effects. 

The configuration in Fig. 1 could be realized 
experimentally by tilting both the specimen and the 
illuminating beam simultaneously in a conventional 
transmission electron microscope (CTEM) while using 

a lens as an interferometer. If we form an image (a set of 
interference fringes) from each pair of beams, we do not 
even encounter the phase ambiguity alluded to above 
because we can measure the absolute position of the 
fringes relative to the optic axis of the microscope. 
However, achieving this form of set-up is experimentally 
non-trivial, especially when we consider the mundane 
constraints of specimen drift, damage, contamination and 
the difficulty of controllably altering the beam alignment 
and specimen tilt without introducing variations in the 
lens parameters (say due to variation in the specimen 
height, of shifts due to coma or other non-axial 
aberrations). 

In contrast with these difficulties, a much more 
straightforward ptychographical configuration arises in 
the STEM mode illustrated in Fig. 2(a). An aperture in 
the back-focal plane of a lens defines a range of incident 
vectors upon the specimen. If the lens is perfect and the 
specimen lies in the focal plane, a 'probe' function in the 
form of any Airy disc is incident upon the specimen. In 
the far field, i.e. in the so-called microdiffraction plane, 
each diffraction spot is now conveniently convoluted 
with a disc-shaped function. For a well chosen aperture 
size, each disc overlaps with its nearest neighbours, 
leading to the classic definition of ptychography. The 
phase ambiguity may be resolved by either moving the 
probe or by introducing some other known phase 
distribution across the aperture function: a probe shitt 
is equivalent to a phase ramp across the aperture 
function, a defocus is equivalent to a parabolic phase 
distribution. 

Upon using the principle of reciprocity (Pogany & 
Turner, 1968), we can reverse the ray propagation in Fig. 
2(a) and we arrive at the configuration shown in Fig. 
2(b), which were refer to as the CTEM configuration. 
The configurations in Fig. 2(a) and Fig. 2(b) are 
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Fig. 1. Optical configuration of  an ideal ptychographical experiment. A 
single axial plane wave interacts with the specimen and the relative 
phase between each pair of  diffracted beams is measured by an 
interference device, which can be moved. The exit surface wave 
function (ESWF) can be reconstructed. 
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equivalent. Different illumination tilts in Fig. 2(b) 
correspond to different points in the microdiffraction 
plane of Fig. 2(a), and different probe positions in Fig. 
2(a) correspond to different position vectors in the image 
plane of Fig. 2(b). It is clear that, as we change the 
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Fig. 2. (a) Ptychography in the STEM configuration. A lens forms a 
probe onto the specimen; in the so-called microdiffraction plane, 
overlapping diffraction discs yield the phase information. (b) The 
equivalent CTEM configuration. Different illumination tilts corre- 
spond to different points in the microdiffraction plane in (a). Neither 
(a) nor (b) are equivalent to Fig. 1 and the reconstructed-object wave 
function (ROWF) is different from the ESWF of Fig. 1 except for 
suitably thin specimens and small scattering angles. 

illumination angle in Fig. 2(b), the ESWF we are 
attempting to measure will change if the specimen is 
substantially thick. As a consequence, neither Fig. 2(a) 
nor Fig. 2(b) correspond to the ideal configuration in Fig. 
1, except that, for thin specimens and small scattering 
angles, these geometries are approximately equivalent. In 
what follows, we will be largely concerned with how the 
ROWFs obtained in the STEM configuration depart from 
the true ESWF that we would observe in the ideal plane- 
wave configuration of Fig. 1. 

In the STEM configuration, we collect a four- 
dimensional data set of microdiffraction patterns 
[IM(IX', p)l 2] recorded as a function of the probe position 
p. In this notation, reciprocal-space coordinates are 
denoted by a prime, It' being a two-dimensional vector 
describing a position in the microdiffraction plane (i.e. a 
certain scattering angle) and p being a two-dimensional 
vector describing the position of the probe in the 
specimen plane. If and only if the interaction of the 
electron wave with the specimen is multiplicative is the 
wave function in the microdiffraction plane a convolution 
of the specimen function with the aperture function in 
reciprocal space such that the intensity distribution is 
given by 

IM(IX', p)l 2 = f f A ( f f -  a')A*(IX' - b ' )~(a ' )~*(b ' )  

x exp[2nip(b' - a')] da' db'. (1) 

We shall proceed by taking the Fourier transform with 
respect to the probe position p to obtain a four- 
dimensional reciprocal-space function 

G(IX', p') = f IM(IX', p)l 2 exp(2rrip- p') dp. (2) 

We can interpret G(IX',p') as the set of all fringes of a 
given spatial frequency for each point It' in the 
microdiffraction plane. If we assume a perfectly crystal- 
line object and if the size of the objective aperture is such 
that the diffraction discs have just single overlap, the 
intensity in the overlap region between the discs G and 
G + H can easily be shown to be 

IM(IX', p)l 2 = IqJGI 2 -Jr- I~G+HI 2 -+- 2ltPcll~G+n[ 

× cos ((ac,+n - ot6) + {X[IX' - (G + H)] 

- X(P' - G)} + 2rrp. H), (3) 

where o~G and otG+n are the phases of the beams G and 
G -t- H, respectively. The intensity in the overlap region is 
thus seen to vary sinusoidally as the probe is scanned 
parallel to the disc separation vector H. 

After the Fourier transform has been taken with 
respect to p, G(IX', p') has considerable magnitude only 
for values of IX' within the overlap region between the two 
discs when p' is equal to It  or - H .  For p' = H, we have 

G(IX', H) = I~'cII ~¢;+nl exp (i(otc;+n - OtG) 

+ {X[IX' - (G  + H) ]  - X(IX' - G ) } ) .  (4) 
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The magnitude of GOt', H) is thus given by the amplitude 
product of the re-interfering beams and its phase by their 
phase difference (including the aberrations introduced by 
the lens). It should be noted and it will be assumed in the 
following that this is true in the presence of dynamical 
scattering including inelastic scattering (see Nellist & 
Rodenburg, 1998, for a discussion of the effects of the 
lens aberrations). 

When we know all the relative phases of each pair of 
adjacent discs, we can phase all the diffraction orders, 
starting from the origin in diffraction space. The 
reconstructed wave function in reciprocal space can be 
Fourier transformed to give the ROWF in real space. The 
ROWF has a higher resolution than conventional images 
recorded in the same optical configuration since these 
would have a spatial frequency cut-off given by the 
radius of the aperture of the probe-forming lens. The 
ROWF has a spatial frequency cut-off defined by the 
highest-order disc which has been phased. Therefore, 
ptychography overcomes the resolution problem of 
conventional imaging and we will refer to it also as 
super-resolution imaging, which can easily be extended 
to the reconstruction of aperiodic structures from the 
four-dimensional microdiffraction data set (Rodenburg & 
Bates, 1992). 

3. The assumption of a muitiplicative interaction 
between probe and specimen 

When we describe dynamical diffraction effects for high- 
energy electrons, because of its forward-scattering 
character, all vectors are usually separated into a lateral 
vector and a z-dependent part: 

r = (R, z); k = (K,, k_.); 

( 3 3 0 = VR, . v =  .£, ~ ,  
(5) 

A wave function ~0(R) = qJ(R, z = 0) of high-energy 
electrons is incident on the entrance of surface of a 
crystal and interacts with a potential distribution V(r) 
inside the specimen of constant thickness t. The wave 
function at the exit surface of the crystal will be called 
~/(R) = ~ ( R , z  -- t). Only elastic scattering is 
considered and we can make use of the time-independent 
Schr6dinger equation 

[V 2 + 4n-2k z + (2m/h2)V(r)]qJ(r)exp(2rrik- r) = 0. 

(6) 

Equation (6) is sufficiently accurate in the case of high- 
energy electron diffraction (HEED) provided that the 
relativistic electron mass m = mo(1 - v2/c2) -1/2 is used 
(Fujiwara, 1961). Using the high-energy approximation, 
in which the second-order derivative with respect to z is 
neglected, and the projection approximation, in which the 

potential variation along the z direction is neglected 
[ V(R, z) = V(R)], we obtain the fundamental equation of 
high-energy electron diffraction (see Bird, 1989; Van 
Dyck, 1985): 

4:rrik=~ + VR2 +(2m/h2)V(R)  * ( R , z )  = 0. (7) 

The formal solution of (7) is given by 

qJt(R) = exp[2~riA(R)t]*o(R), (8) 

where A is an operator defined as 

A(R) : [(1/8rrZkz)VR 2 + (a/2zr)V(R)] (9) 

and the interaction constant o" is defined as 

a = m/27rk._ h 2. (10) 

In the well known phase-object approximation (POA), 
the propagation term in (9) is neglected and we obtain 

~t(R) = exp[iaV(R)t]q%(R). (11) 

In this approximation, the effect of the specimen on the 
incident wave is represented by multiplying the incident 
wave function ~o(R) by a transmission function whose 
phase is proportional to the projected potential. The POA 
represents the limiting case for high voltages, for which 
the wavelength tends to zero and the interaction constant 
tends to a constant value. The terms appearing in the 
expansion of (11) can be identified with those of the Born 
series and therefore represent the multiple scatte.ring of 
the electrons, although neglecting their propagation. In 
practice, the POA has only a limited range of validity as it 
is only correct up to first order in thickness and is suited 
only to rather low resolution. However, we can obtain an 
improvement to the POA by splitting the propagation 
term symmetrically: 

qJt(R) = {exp[(t/Z)(i/4zrkz)VR2] exp[iaV(R)t ] 

x exp[(t/2)(i/4rck..)VR2]}q%(r ). (12) 

We will call (12) the improved POA (IPOA), which we 
have obtained by separating propagation and interaction 
effects into three terms. Equation (12) is correct to 
second order in t and yields an important extension of the 
POA, which holds for greater thicknesses and higher 
resolution. According to the IPOA, the electron wave 
travels through free space before and after the central 
plane of the crystal, where it interacts multiplicatively 
with the projected potential. Van Dyck (1983) used the 
same expression for the discussion of improvements to 
slice functions in multislice electron diffraction calcula- 
tions In the case of a general primary wave function 
~0(r) such as a nanoprobe, we realize that the wave 
function 

q/re(R)-- {exp[(t/2)(i/4rckz)VR2]}q%(R ) (13) 
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interacts multiplicatively with the usual phase-object 
function instead of q-'o(R); qL,,(R) is the wave function 
that would arrive at the middle section of the specimen 
after free-space propagation. Broeckx, Op de Beeck & 
Van Dyck (1995) used channelling theory for the 
discussion of the factorization of the STEM wave 
function into the probe function at the entrance surface 
of the specimen and a specimen-dependent part. How- 
ever, (12) implies that this assumption is too strict. The 
plane of interaction of the probe with the specimen can 
be thought of as the middle section of the specimen. The 
simulations described below serve as a good demonstra- 
tion of this property. 

4. Calculation of ptychographical reconstructions 

We now turn to the question of the calculation of 
ptychographical reconstructions. If we wanted to simu- 
late the probe propagation through the crystal for each 
probe position, we would have to make great demands on 
the size and the sampling of the supercell used. The 
computer time required would be proportional to~ 
N~,N~ log Nu,, where N~,, is the number of sampling 
points in the microdiffraction plane (that is, the number 
of beams included in the calculation) and N# the number 
of probe positions. This would be identical to the 
simulation of ADF images (Kirkland, Loane & Silcox, 
1987) which is notoriously slow. However, the propaga- 
tion of the probe does not have to be calculated, at least 
not in the case of a perfect crystal, because in the 
simplest reconstruction methods the relative phase 
between diffraction discs is measured at one point of 
their overlap region (typically the midpoint), in which 
only two beams from opposite points in the illuminating 
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Fig. 3. The Ewald-sphere construction for a microdiffaction experiment. 
For each beam from the convergent beam, one Ewald sphere must be 
drawn and all the resulting diffraction patterns should be summed 
coherently. To find the relative phase between the reflections G and 
G + H, beams scattered from diametrically opposite points in the 
incoming convergent beam (beam tilts H/2 and - ! l / 2 )  are re- 
interfered. The two scattered waves cross the same point of the shape 
transform (i.e. the excitation errors of the two reflections are equal). 

convergent beam interfere (Fig. 3). For instance, we 
measure the relative phase of the discs G and G + H, 
where H is the disc separation vector, at a point into 
which beams with wave vectors - H / 2  and H/2 are 
scattered. These beams propagate through the crystal 
independently of all other scattered beams and can thus 
be modelled by (tilted) plane-wave illumination condi- 
tions in ordinary multislice programs (Goodman & 
Moodie, 1974; Self, O'Keefe, Buseck & Spargo, 1983). 
The advantage is that after the calculation of two beams 
of interest we can look at their amplitude product and 
relative phase as a function of thickness similar to a 
Pendell6sung plot. However, in the case of aperiodic 
specimens, mixing of all the beams in the scattering 
process occurs and the full propagation of the probe has 
to be simulated. 

Illumination tilts K, of the incoming plane wave can be 
modelled by the alteration of the propagation function in 
multislice programs according to 

P(K) = exp[n'iXAz(K + K,)2], (14) 

which corresponds to a slight shear of the specimen such 
that every successive slice is shifted by a small amount. 
In order to calculated complex products of beam 
amplitudes, we have the choice between two calculation 
methods (Fig. 4). According to the theorem of recipro- 
city, the rocking curve of a beam from a structure that has 
a mirror plane coinciding with the plane z = t/2, e.g. if 
the projection approximation holds, is symmetric with 
respect to the Bragg condition (Pogany & Turner, 1968), 
that is: 

qJG(--G/2 + A K , ) =  q % ( - G / 2 -  AKt). (15) 

i s objective lens 
(-G-H/2) 

(H/2) (-IU2) ~ 
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~G H(-H/2) ~IaG(-G-H]2 G+H(-G-I-I/2) 

objective lens 
t 

(a) (b) 
Fig. 4. Two possible methods to calculate the interference of the beams 

G and G + H in the middle of the overlap between the two beams. (a) 
STEM geometry: two beam tilts ( - H / 2 )  and (H/2) are introduced 
and the complex product ~o+n( -H /2 )~c (H/2 )  is calculated. (b) 
CTEM geometry: one beam tilt ( - G - H / 2 )  is introduced and the 
complex product ~ ¢ > n ( - G - H / 2 ) q J ~ ; ( - G - H / 2 )  is calculated. 
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In this notation, the beam tilt is put in brackets and 
• t:;(-G/2) corresponds to the Bragg condition for the 
reflection G. In particular, we get the identity 

~Pc+n(-H/2)qJ~,(H/2) 

-- ~Pc.+n(-G- H/2)qJ~ . ( -G-  H/2). (16) 

The two sides of (16) correspond to the STEM and the 
CTEM geometry, respectively, and we find that the phase 
information in a ptychographical experiment can be 
simulated either way. Note that the propagator functions 
applied in the two cases are different, but the amplitudes 
and relative phases calculated by the two methods turn 
out to be almost the same, which gives us confidence in 
the simulation method. In contrast to conventional lattice 
imaging, we do not have to calculate the effect of the lens 
aberrations, as we usually choose diffraction information 
from the centre of overlap between the discs, which is not 
affected by the lens transfer function, provided that the 
objective lens is perfectly aligned (Nellist & Rodenburg, 
1998). This is very different from image simulations in 
high-resolution electron microscopy (Spence, 1988): the 
defocus is no free parameter in the calculations. Instead, 
all sections of a thick specimen are in a sense imaged in 
focus and we will discuss in the next section how this is 
represented in the image reconstructions. 

5. Ptychography from partly overlapping discs: 
reconstruction method I 

In this paper, we use silicon as an example in order to 
examine the two simplest reconstruction methods of 
ptychography. The characteristic dumbbell structure 
showing pairs of Si atoms with an apparent spacing of 
0.136 nm is seen in the (110) orientation, which is often 
used as a practical resolution test for high-resolution 
microscopes. The {002} and {222} beams are kinema- 
tically forbidden and only weakly excited for small 
crystal thicknesses. In order to resolve the atom pairs at a 
resolution of 0.136 nm, all 19 inner reflections up to the 
{ 004 } beams have to be included in the imaging process. 
However, if fewer beams contribute, images can be taken 
that apparently show up the atomic positions but cannot 
be regarded as structure images (Hutchison, 1982; 
Hutchison & Waddington, 1988). Izui, Furono & Otsu 
(1977) were the first to observe the dumbbell contrast in a 
microscope with a point resolution of only 0.29 nm. 
Following this experimental success, simulations were 
carried out using the multislice (Spence, O'Keefe & 
Kolar, 1977) and the Bloch-wave methods (Desseaux, 
Renault & Bourret, 1977), which showed that the 
characteristic image contrast is periodic with respect to 
both thickness and defocus. A detailed study regarding 
conventional bright-field imaging of elemental semicon- 
ductors including effects of the lens aberrations and of 

thickness variations is given in Glaisher, Spargo & Smith 
(1989). Other techniques to image Si(ll0) at atomic 
resolution are holography (Orchowski, Rau & Lichte, 
1995) and ADF imaging (McGibbon & Pennycook, 
1994). 

The simplest situation for ptychography occurs when 
diffraction discs partly overlap. In this case, the object 
wave function in reciprocal space can be readily 
reconstructed using a technique that we will refer to as 
reconstruction method I (RMI). The amplitudes of the 
ROWF are taken from the centres of the diffraction discs 
and its phases are successively determined from the set of 
relative phases between adjacent discs. To find the 
relative phase between the reflections G and G + H, we 
use beams from diametrically opposite points in the 
incoming convergent beam that correspond to beam tilts 
H/2 and - H / 2 ,  respectively. In order to simulate the 
experiment on silicon (110) (electron energy 100 keV) 
presented in Nellist & Rodenburg (1998), we proceeded 
as follows: First, we calculated amplitudes and phases of 
all beams including the {004} reflections for axial 
illumination, that is K, -- 0. This produced the ESWF via 
one Fourier transformation, but also the beam amplitudes 
for the ptychographical reconstruction, which are 
extracted from the centres of the diffraction discs. 
Second, we calculated phase differences between perti- 
nent beams by applying tilted plane-wave illumination 
conditions. All beams were phased successively, using 
the shortest routes available. After reconstructing the 
complex values of 19 beams, we took a Fourier transform 
to obtain a periodic function in real space, which is our 
ROWE The multislice simulations were carried out using 
the software package CERIUS (developed by Molecular 
Simulations) on a Silicon Graphics computer. Electron 
scattering factors by Doyle & Turner (1968) were used. 
For Si(110), a slice of thickness of 0.384 nm was chosen, 
which corresponds to the inclusion of zero-layer reflec- 
tions only (projection approximation). The Debye-Waller 
factor was set to 0.45 (Saunders, private communication). 

Let us consider the case of a crystal with a thickness of 
7 nm (cf Fig. 6 in Nellist & Rodenburg, 1998). Figs. 
5(a), (b) show the magnitude and phase of the ESWF, 
respectively. Figs. 5(c), (d) show the same image wave 
function with a focus setting on the middle section of the 
structure, i.e. the complex amplitudes of the scattered 
beams obtained under axial illumination conditions have 
been multiplied with a defocus term corresponding to a 
focus defect of t/2 before taking the Fourier transform. 
Figs. 5(e), ( f )  show the magnitude and phase of the 
ROWE which clearly demonstrate the match with the 
'defocused' wave function in Figs. 5(c), (d). It is the 
phase of the ROWF that mirrors the projected structure, 
and we can explain this easily using the IPOA in (12): 
The propagation of qJo(r) to the middle section of the 
specimen does not appear in the ROWF because the 
reconstruction is insensitive to defocus. The other 
propagation term in (12) corresponds to a phase factor 
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in diffraction space that cannot be measured. Hence, the 
ROWF is closer to a pure phase object than the ESWF 
because the ESWF does involve propagation through the 
specimen. Indeed, the phase change on top of the atomic 
columns is about 25% greater in the ROWF than in the 
ESWF. Similarly, the standard variation of the magnitude 

of the ROWF is 30% smaller than that of the ESWE We 
cannot write the ROWF in a closed form which accounts 
for terms higher than second order in t, but the 'thick 
phase grating' formula by Cowley & Moodie (1962) 
yields the correct amplitudes of the reconstructed beams 

- which are taken from the centres of diffraction discs - 

Fig. 5. Object wavefunctions from Si(110) (thickness of  7 nm): (a) magnitude and (b) phase of  the ESWF; (c), (d) 'back-propagated' wavefunction 
in magnitude and phase with a focus setting on the middle section of  the structure; (e), ( f )  magnitude and phase of  the ROWF, which clearly 
matches the 'defocused' wavefunction (c), (d). 

t=2.3 nm 4.6 nm 6.9 run 9.2 nm 11.5 nm 13.8 nm 16.1 nm 

ESWF 

ROWF 

Fig. 6. Comparison between ESWF and ROWF of Si(110) in magnitude (m) and phase (p) for thickness steps of  2.3 nm. 
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up to third order in t: 

~ROWF(R) 

--exp[io'y~.c VG[sinOrsct)/JrsG]exp(27riGR)} (17) 

Ptychography is one of several methods currently under 
investigation that aim at the reconstruction of a complex- 
valued specimen function. In the first group of 
approaches, the specimen is axially illuminated and 
phase information in the image is gained by focus 
variation in the objective lens (Van Dyck, Op de Beeck & 
Coene, 1993) or interference of the electron wave with a 
holographic reference wave (Lichte, 1992). In the second 
class of reconstruction methods, tilt series are employed 
(Kirkland, Saxton, Chau, Tsuno & Kawasaki, 1995) or 
different portions of the microdiffraction plane are 
recorded as a probe is scanned across the specimen 
[ptychography or quadrant detector imaging (Landauer, 
McCallum & Rodenburg, 1995)], both schemes being 
related to one another by reciprocity. In the former two 
cases, the aim is to reconstruct the wave function at the 
exit surface of the specimen up to the information limit of '  
the microscope. However, it should be noted that the 
absolute defocus value required for the deconvolution 
will rarely be accurately known and will usually be 
determined by trial and error. In the latter two cases, the 
reconstruction can exceed the information limit. The 
relevant scattering geometry is one in which the beams 
that are being re-interfered pass through diametrically 
opposite regions of the objective lens and their path 
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Fig. 7. Phase closures as a function of thickness: (000)_--+ (1] 1)_-~ 
(002) ~ (000) (solid line); (lil) ~ (002) ~ (113) ~ (111) 
(dashed line); (002) ~ (113) ~ (004) --* (002) (dotted line). 

lengths during the propagation through the specimen are 
equal. The consequence is that, in this class of 
reconstruction methods, the defocus is not a parameter 
as in conventional imaging and the reconstructed wave 
corresponds to afixed focus setting on the middle section 
of the specimen. Furthermore, deconvolution schemes 
(Rodenburg & Bates, 1992) should assume a probe 
profile corresponding to the middle section of the 
specimen. 

Fig. 6 shows a comparison between ESWF and ROWF 
for thickness steps of 2.3 nm. We note that the phase of 
the ROWF shows the projected structure up to a 
thickness of about 10 nm. Beyond this thickness, its 
resemblance to the 'defocused' ESWF also vanishes. For 
thicknesses exceeding 10 nm, we face increasing dis- 
crepancies in the phases assigned to the reconstructed 
beams depending on the route that we choose to 
successively phase the diffraction discs in the micro- 
diffraction plane. This is well expressed in the phase- 
closure diagrams (Fig. 7). Considering the form of the 
microdiffraction patterns from silicon {cf Fig. 1 in 
Nellist & Rodenburg (1998)], we see that the phases 
assigned to three overlapping discs that are arranged in a 
close triangle are uniquely defined if the three pairwise 
phase differences add to zero. It is clear that in the case of 
triangles which consist of symmetry-related reflections 
the phase closure is zero for all thicknesses, e.g. (000) 
(111) ~ (111) ~ (000). Fig. 7 shows the phase closures 
(measured in degrees) of (000) ~ ( 1 1 1 ) ~  (002) 
(000) (solid line), (111) ~ (002) ~ (113) ~ (151) 
(dashed line) and (002) --~ (113) ~ (004) --~ (002) 
(dotted line), respectively. The phase closure including 
the central beam (solid line in Fig. 7) does not exceed 
50 ° . This corresponds to the validity of the assumption of 
a multiplicative interaction of the probe with the 
specimen at low resolution (the 002 reflection corre- 
sponds to a fringe spacing of 0.272 nm). However, the 
phase closures of the higher-order beams depart rather 
abruptly from zero for thicknesses greater than 10 nm. 
The notion of a uniquely defined ROWF becomes 
meaningless at this thickness but it should be noted that 
a higher accelerating voltage would increase this 
thickness value by some amount. 

6. Relation between different GOt', p') values 

If the structure is sufficiently thin such that inelastic 
scattering can be neglected, every electron from the 
incoming wave is contained in each collected micro- 
diffraction pattern and we have 

f IM(~t', p)l 2 dla' = 1, (18) 

assuming that the wave function has been suitably 
normalized. If we take the Fourier transform with respect 
to the probe position p and exchange the order of 
integration, we obtain 
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f G(ll', p ' )d l~ '=  8(p'). (19) 

Equation (19) signifies that fringes in amplitude and 
phase of a given spatial frequency cancel out over the 
entire microdiffraction plane. This applies to any form of 
incident wave and thus in theory also to one comprising 
only the beams I-I/2 and -1-1/2. As a consequence, 
according to (19), the sum of G(lx', p') over all the 
conjugate points in the interference regions in each of the 
planes p' = constant [e.g. the interference regions in Fig. 
5 in Nellist & Rodenburg (1998)] should be zero if we 
include only elastic scattering in the calculation. The 
reason for this constraint is that the sum of complex 
products of beam pairs is equal to the scalar product of 
two columns of the scattering matrix (Sturkey, 1962), 
which must vanish because of  the unitarity of the 
scattering matrix. Fig. 8 shows the magnitude of the sums 
of G(la', p') over different sets of conjugate points in the 
interference regions comprising: 

(a) only the first-order interference region of  the beam 
pair (111)/(000) (solid line); for small thickness values, 
this is just the kinematical value of the beam (111), 
which increases linearly with thickness; 

_(b) the opposite first-order interference regions 
(111)/(000) and (000)/(111) (dotted line); a quadratic 
increase for small t results; 

(c) all interference regions up to {004} (dashed line); 
its deviation from zero is caused by the interference of 
beams with large wave vectors; 

(d) the same regions as in (c) but with inelastic 
scattering included in the calculation according to an 

absorption potential V~(r) = 0.1 V(r), where V(r) is the 
real potential used (dash-dotted line); (d) is always 
greater than (c), as expected. 

It is interesting to note that (d) can be directly related 
to the contrast in ADF images since it is the deficit of  
electrons in the low-angle interference regions that 
corresponds to the redistribution of electrons scattered 
into high angles and that defines the contrast of the { 111 } 
fringes in ADF images. The plateau in (d) expresses the 
well known absence of contrast reversal (Pennycook & 
Jesson, 1991). 

7. Reconstructions with a bigger aperture: 
reconstruction method II 

Another simple approach to reconstruct the object wave 
function becomes apparent if we increase the radius of 
the aperture such that there is overlap between several 
diffraction orders and we consider the intensity variation 
midway in the overlap between the central disc and each 
diffracted disc. Fig. 9 shows simulated microdiffraction 
patterns from Si(110) for two probe positions. The first 
thing to note is that due to the multiple interference of 
many discs the adjustment of  lens parameters, particu- 
larly the defocus, is not as straightforward as in the case 
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Fig. 8. Magnitudes of the sums of G(Ix', p') over different sets ot 
conjugate points in the interference regions in a plane p' = constant 
[corresponding to the disc separation vector (111)]; see text. 

Fig. 9. Simulated microdiffraction patterns from Si(110), using a bigger 
aperture, for two probe positions. 
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of single overlap. After Fourier transformation with 
respect to the probe position, we obtain interference 
regions of the form depicted in Fig. 10. In reconstruction 
method II (RMII), the amplitude and phase of each 
reconstructed beam are taken from the centre of the 
overlap between the central disc and the pertinent 
diffracted disc (these points are indicated by arrows in 
Fig. 10). The Fourier components for the ROWF are thus 
given by the products of beam amplitudes of the form 
qh.i(-I-I/2)qJg(I-I/2), where H is not fixed but represents 
all the different reflections. This corresponds to the set of 
points in G(la', p') for which ~t' = p'/2. [See Plamann & 
Rodenburg (1994) for the extension of RMII to a general 
imaging technique, applicable to aperiodic structures.] In 
the case of a strongly scattering crystal, we have to ensure 
that the centre of overlap between the central disc and 
each diffracted disc does not coincide with any part of the 
overlap region of any two other discs, as this would lead 
to mixing of the interference regions. However, as Fig. 10 
indicates, we can find an aperture size for which the 
centres of the interference regions are not obscured. 

Two properties of this scattering geometry should be 
noted: Firstly, a sector detector such as a quadrant 
detector would integrate over the interference regions in 
Fig. 10 such that the image contrast in reconstructions 
from quadrant detector images (Landauer, McCallum & 
Rodenburg, 1995) is expected to be rather similar to 

those presented here. Secondly, the Bragg condition is 
satisfied in the centre of the overlap of the central disc 
and each diffracted disc (Fig. 11). In the kinematical 
theory, we find 

qJx(-H/2)qJ~(I-I/2) = icrVHt, (20) 

which is linearly related to the structure factor of the 
reflection H. No excitation error appears in (20), such 
that the imaginary part of the ROWF in real space is 
equal to the projected potential without any thickness 
effects. [Similarly, we can reconstruct a double-resolution 
image that is unaberrated and has infinite depth of focus 
for a general three-dimensional object, see Plamann & 
Rodenburg (1994).] However, here we are interested in 
the non-kinematical case, which we encounter in 
practice. Because of the vanishing excitation errors, the 
ROWF for RMII can be described by the POA to a better 
approximation than for RMI: 

qJROwF(R) = exp[itrV(R)t]. (21) 

Equation (21) includes the kinematical theory and 
multiple scattering up to second order. The reconstruc- 
tion technique thus ensures the best possible range of 
applicability of the POA. 

Here we present simulations for the same structure as 
above but choose an electron energy of 300 keV because 

Fig. 10. Interference regions for the case of a bigger aperture; in reconstruction method II, amplitudes and phases of the reconstructed beams are 
taken from the centre of the overlap between the central disc and the pertinent diffracted disc, indicated by arrows. 
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we believe that it should be possible to perform an 
equivalent experiment in a 300 keV STEM, which has a 
sufficient degree of coherence. In Fig. 12, we present 
magnitude and phase of the ROWF for different 
thicknesses. The phase shows the projected structure 
for all thicknesses below 25 nm. However, for large 

-HI2 

Fig. 11. Interferences between the central beam and the scattered beams 
in reconstruction method II occur in a symmetric scattering geometry 
in which the Bragg condition for each beam is satisfied. 

thicknesses, the spacing of the dumbbells is slightly 
wrong. For small thicknesses, the imaginary part also 
shows the projected structure but it was found that for 
larger thicknesses there is an additional phase factor. 
Indeed, dumbbell features can be seen in the imaginary 
part of the ROWF after the ROWF has been multiplied by 
a constant phase factor (Fig. 13). (The same effect is 
obtained if the phase of the reconstructed central beam is 
not set to zero. It should be noted that the imaginary part 
of the ROWF for a phase offset of -z r /2  is the same as 
the real part of the ROWF without phase offset.) The 
phase factor is approximately -0 .3  rad per 2.9nm 
thickness step. We can understand this remarkable 
phenomenon when we look at the variation with crystal 
thickness of the amplitudes and phases of the recon- 
structed beams (Figs. 14 and 15). The amplitude of the 
kinematically forbidden { 002 } beams remains very small 
for thicknesses below 25 nm. Apart from a slight 
oscillation of the { 111 } beams, the variation with 
thickness of all beam amplitudes ({220}, {004} and 
{ 113 } are also shown) is very similar up to a thickness of 
about 25 nm. Similarly, the phases of the reconstructed 

t = 2 . 9  ran  5 .8  n m  8 .6  n m  11.5 n m  14.4 n m  

t = 1 7 . 3  n m  20 .2  nm 2 3 . 0  nm 25 .9  n m  28 .8  nm 

Fig. 12. Magnitude (m) and phase (p) of the ROWF (reconstruction technique II) for different thicknesses. 
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beams increase at the same rate in this thickness range. It 
is apparent that after the multiplication of  these complex 
beam amplitudes with a pertinent phase we obtain a 
function in reciprocal space that is approximately 
proportional to the Fourier transform of  the projected 
potential. The POA offers a plausible explanation for this 
behaviour. If the crystal structure is composed of  atomic 
columns containing the same elements, such as in the 
case of  Si(110), the square of  the projected potential is 
approximately proportional to the projected potential 
itself, which is the basis for the Sayre equation (Sayre, 
1952). By induction, this applies to all positive powers of  
the projected potential and we have 

[o-V(R)]" ---- og "-1 V ( R ) ,  (22) 

where c~ is a suitable constant. In the POA, we obtain 

qJ(R) -- exp[ icrV(R) t ]  
O O  

= 1 + y ~ [ k r V ( R ) t ] n / n !  
n=l 

= 1 + [V(R)/ot] y'~(iet t) ' /n! 
n=l 

- -  1 + [ V ( R ) / a ] [ e x p ( i o t t ) -  1] 

= 1 + ( 2 i / o t ) e x p ( i o t t / Z ) s i n ( o t t / 2 ) V ( R ) .  (23) 

The amplitudes of  the scattered beams are thus 
approximately given by 

q lc  = ( 2 i / o t ) e x p ( i o t t / 2 ) s i n ( o t t / 2 ) V  c .  (24) 

t = 5 . 8  run 8 .6  run 11.5 ira1 14.4 run 17.3 n m  

(a) 

( b )  

Fig. 13. Imaginary part of  the ROWF: (a) without phase offset; (b) with phase offset in real space (see text). 
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We see that the POA would at least explain the observed 
linear increase in phase and amplitude of the recon- 
structed beams as a function of thickness for small 
thicknesses. 

8. Conclusions 

We have investigated the interpretation of ptychographi- 
cal reconstructions from perfect crystals. In the case of a 
perfect crystal, the phase determination between diffrac- 
tion discs relies on the interference of only two beams 
from opposite points in the illuminating convergent 
beam, whose propagation through the specimen can 
easily be calculated in multislice programs by applying 
different plane-wave illumination tilts. Two simple 
ptychographical reconstruction methods have been 
introduced and simulations have been presented using 
Si(110) as an example. The first reconstruction method 
applies to the case of discs with single overlap. It has 
been shown that the reconstructed wave function 
corresponds to a fixed focus setting on the middle 
section of the specimen. For S i ( l l0 ) ,  the projected 
structure can be reconstructed up to a thickness of about 
10 nm. For greater thicknesses, the phases assigned to the 
reconstructed beams are not unique. The second 
reconstruction method applies to discs with multiple 
overlap and uses only diffraction information from the 
central disc. For S i ( l l0) ,  the dumbbells can be 
reconstructed for all thicknesses smaller than 25 nm. 
For perfect crystals, the first reconstruction method 
requires only a line scan of the probe, while for the 
second reconstruction method a two-dimensional area 
scan has to be performed, and therefore considerably 
more data have to be recorded. A very practical 
simplification for the latter case could be the use of a 
quadrant detector, which should produce very similar 
image reconstructions from only four real-space images. 
It would be interesting to see if  the silicon dumbbells 
could be reconstructed using quadrant detector imaging 
for rather thick crystals, as our simulations suggest. 
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support. 
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